Name of the Department: Mathematics

Session: 2024-2025

Month	Weeks	Books/Unit/Topics	Teaching Methods/ Resources	Students activities
July	1 - 4	Unit-I: Limit and Continuity (epsilon & delta definition). Types of discontinuities, Differentiability of functions.	Teaching Methods: Lecture Methods/PPT Resources:	 Students Presentations Class tests Seminars Quiz
August	1	Successive differentiation, Leibnitz's Theorem	1. H.Anton, I. Birens& S. Davis,	5. Group Discussions
	2 - 4	Unit-II: Indeterminate forms, Rolle's Theorem, Lagrange's and Cauchy's Mean Value Theorems	Calculus, John Wiley & Sons, Inc., 2002.	
September	1 - 3	Taylor's theorem with Lagrange's and Cauchy's form of remainder, Taylor's series, Maclaurin's series	2. G.B. Thomas & R.L. Finney, Calculus, Pearson Education, 2017.	
	4	Unit -III: Concavity, Convexity and Points of inflexion.	3. T.M. Apostol, Calculus, Vol1, John Wiley &Sons,	
October	1 - 4	Curvature, Radius of Curvature, Centre of Curvature, Asymptotes, Singular points, Double points, Polar coordinates, Relation between Cartesian and Polar Coordinates.	2002.	
November	1 - 4	Unit -IV: Functions of several variables, Partial differentiation, Euler's Theorem on homogeneous functions		
December	1 - 4	Maxima and Minima of functions of several variables.		
February	1 - 2	Maxima and Minima with Lagrange multiplies method, Jacobians		
	2 -4	Revision,		

Course: Differential Calculus (MATH101TH)

Name of the Department: Mathematics

Session: 2024-2025

Course: Differential Equations (MATH102TH)

Month	Weeks	Books/Unit/Topics	Teaching Methods/ Resources	Students activities
July	1 - 4	Unit-I: Basic theory of linear differential equations, Wronskian. First order exact differential equations. Integrating factors and rule to find integrating factor.	Teaching Methods: Lecture Methods/PPT Resources: 1. Sheply L., Ross	 Students Presentations Class tests Seminars Quiz Group
August	1	First order higher differential equations solvable for x, y, p, Clairut's form	Differential Equations, 3 rd Ed., John Wiley & Sons, 1984.	Discussions
	2 - 4	Unit-II: Methods of solving higher-order differential equations. Solving a differential equation by reducing its order.	2. I. Sneddon, Elements of Partial Differential Equations, MacGraw Hill International Edition,	
September	1 - 2	Linear homogenous equations with constant coefficients, Linear non-homogenous equations.	1967.	
	3-4	Unit -III: The method of variation of parameters with constant coefficients.		
October	1 - 4	The Cauchy-Euler equation and Legendre equation. Simultaneous differential equations, Total differential equations.		
November	1 - 2	Unit- IV: Order and degree of partial differential equations, Formation of first order partial differential equations.		
	2 - 4	Linear partial differential equations of first order,		
December	1 - 4	Lagrange's method and Classification of second order partial differential equations and Revision		
February	1 - 4	Revision,		

Name of the Department: Mathematics

Session: 2024-2025

Month	Weeks	Books/Unit/Topics	Teaching Methods/ Resources	Students activities
July	1 - 4	Unit-I: Transportation Problem and its mathematical formulation, northwest corner method, least cost method	Teaching Methods: Lecture Methods/PPT Resources:	 Students Presentations Class tests Seminars Quiz
August	1 - 4	Unit-II: Vogel approximation method for determination of starting basic solution,	1. Mokhtar S. Bazaraa, John J. Javis and Hanif D. Sherali, Linear Programming and NetworkFlows, 2 nd Ed., John Wiley & Sons, India, 2004.	5. Group Discussions
September	1	Algorithm for solving transportation problem		
	2 - 4	Unit -III: Assignment problem and its mathematical formulation.	2. Hamdy A. Taha, Operational Research, An Introduction, 8 th Ed.,	
October	1 - 2	Hungarian method for solving assignment problem.	Prentice – Hall India, 2006.	
	3 - 4	Unit -IV: Game theory, Formulation of two-person zero sum game.	Introduction to	
November	1 - 4	Solving two-person zero sum games with mixed strategies,	- Operational Research, 9 th Ed., Tata McGraw Hill,	
December	1 - 4	Graphical solution procedure. Revision	Singapore, 2009.	
February	1 - 4	Revision,		

Course: Transportation & Game Theory (MATH317TH)

Name of the Department: Mathematics

Session: 2024-2025

Month	Weeks	Books/Unit/Topics	Teaching Methods/ Resources	Students activities
July	1 - 4	Unit-I: Limit and Continuity (epsilon & delta definition). Types of discontinuities, Differentiability of functions.	Teaching Methods: Lecture Methods/PPT Resources:	 Students Presentations Class tests Seminars Quiz
August	1	Successive differentiation, Leibnitz's Theorem	1. E. Fischer, Intermediate Real	5. Group Discussions
	2 - 4	Unit-II: Indeterminate forms, Rolle's Theorem, Lagrange's and Cauchy's Mean Value Theorems	analysis, Springer, 1983. 2. R.G. Bartle and D.R. Sherbert,	
September	1-3	Taylor's theorem with Lagrange's and Cauchy's form of remainder, Taylor's series, Maclaurin's series	Introduction to Real Analysis, John Wiley and Sons (Asia) P. Ltd., 2000	
	4	Unit -III: Concavity, Convexity and Points of inflexion.	3. K.A. Ross, Elementary Analysis	
October	1 - 4	Curvature, Radius of Curvature, Centre of Curvature, Asymptotes, Singular points, Double points, Polar coordinates, Relation between Cartesian and Polar Coordinates.	 The Theory of Calculus Series – Undergraduate Texts in Mathematics, Springer Verlag, 2003 	
November	1 - 4	Unit -IV: Functions of several variables, Partial differentiation, Euler's Theorem on homogeneous functions	4. T.M. Apostol, Calculus, Vol1, John Wiley &Sons, 2002.	
December	1 - 4	Maxima and Minima of functions of several variables.	. 2002.	
February	1 - 2	Maxima and Minima with Lagrange multiplies method, Jacobians		
	2 -4	Revision,		

Course: Real Analysis (MATH201TH)

Name of the Department: Mathematics

Session: 2024-2025

Course:	Matrices	(MATH3	J1TH)
---------	----------	--------	---------------

Month	Weeks	Books/Unit/Topics	Teaching Methods/ Resources	Students activities
July	1 - 4	Unit-I: Types of matrices, Rank of matrix, Invariance of rank under elementary transformations, Reduction to normal form,	Teaching Methods: Lecture Methods/PPT Resources:	 Students Presentations Class tests Seminars Quiz
August	1	Solution of linear homogeneous and non-homogeneous equations.	1. A.I. Kostrikin, Introduction to Algebra, Springer	5. Group Discussions
	2 - 4	Unit-II: Matrices in diagonal form, Reduction to diagonal form, Computation of matrix inverses using elementary row operations.	Verlag, 1984. 2. S.H. Friedberg, A.L.Isel and	
September	1 - 2	Rank of matrix. Solution of a system of linear equations using matrices. Illustrative examples of above concepts from geometry, physics, chemistry etc.	L.E.Spence, Linear Algerbra, Prentice Hall of India Pvt., Ltd., New Delhi, 2004.	
	3 - 4	Unit -III: Definition of Vector space, R,R2, R3, as vector spaces over R,	3. Richard Bronson, Theory and Problems of Matrix Operators, Tata McGraw	
October	1 - 4	Concept of Linear dependence/Independence, Standard basis for R,R2, R3, Examples of different bases, Subspaces of R2, R3.	Hill,1989.	
November	1 - 4	Unit -IV: Translation, Dilation, Rotation, Reflection in a point, line and plane, Matrix of basic geometric transformations.		
December	1 - 4	Interpretation of eigenvalues and eigenvectors for such transformations and eigenspaces as invariant subspaces.		
February	1 - 2	Questions on eigenvalues and eigenvectors, Revision,		

Name of the Department: Mathematics

Session: 2024-2025

Course: Probability & Statistics (MATH313TH)

Month	Weeks	Books/Unit/Topics	Teaching Methods/ Resources	Students activities
July	1 - 4	Unit-I: Sample space, probability axioms, real random variables (discrete and continuous), cumulative distribution function.	Teaching Methods:Lecture Methods/PPTResources:	 Students Presentations Class tests Seminars Quiz
August	1-2	Probability mass/density functions	1. Robert V. Hogg, Joseph W. McKean and Aen T. Craig,	5. Group Discussions
	3 - 4	Unit-II: Mathematical expectations, moments, moment generating functions.	Introduction to Mathematical Statistics, Pearson Education, Asia, 2007.	
September	1 - 3	Questions on moment generating functions, Characteristic function, discrete distribution: Uniform.	2. Irwin Miller and Marylees Miler, John	
	4	Unit -III: Binomial distribution,	E. Freund, Mathematical Statistics with	
October	1 - 4	Poisson distribution, continuous distributions: uniform, normal distribution	Application, 7 th Edition Pearson Education, Asia, 2006.	
November	1	Exponential distribution.	3. Sheldon Ross, Introduction to	
	3-4	Unit -IV: Joint cumulative distributionfunction and its properties. Joint probability density functions	probability Model 9 th Ed. Academic Pres Indian Reprint, 2007.	
December	1 - 4	Marginal and conditional distributions, expectation of functions of two random variables.		
February	1 - 2	Conditional expectations, independent and random variables.		
	2 - 4	Revision		

Name of the Department: Mathematics

Session: 2024-2025

Course: Integral Calculus (MATH309TH)

Month	Weeks	Books/Unit/Topics	Teaching Methods/ Resources	Students activities
July	1 - 4	Unit-I: Integration by Partial fractions Integration of rational and irrational functions.	Teaching Methods: Lecture Methods/PPT Resources:	 Students Presentations Class tests Seminars
August	1-2	Properties of definite integrals	1. G.B. Thomas & R.L. Finney,	 Quiz Group Discussions
	3 - 4	Unit-II: Reduction formulae.	Calculus, Pearson Education, 2017.	
September	1 - 3	Reduction formulae cont., Reduction by connecting two integrals Smaller index =1 method.	2. H. Anton, I. Bivens and S. Davis.	
	4	Unit -III:Curves in plane,	Calculus, john Wiely and Sons (Asia) P. Ltd., 2002.	
October	1 - 4	Area and length of curves in the plane volume and surfaces of solids of revolution	- Liki, 2002.	
November	1	Cartesian and parametric form.	-	
	3 -4	Unit -IV:Double Integrals		
December	1 - 4	Triple integrals.		
February	1 - 2	Some questions on Double and triple integrals.		
	2 - 4	Revision		

Name of the Department: Mathematics

Session: 2024-2025

Course: Vector Calculus (MATH310TH)

Month	Weeks	Books/Unit/Topics	Teaching Methods/ Resources	Students activities
July	1 - 4	Unit-I: Scalar and vector product of three vectors, Product of four vectors, Reciprocal vectors. Scalar valued point functions	Teaching Methods: Lecture Methods/PPT Resources:	 Students Presentations Class tests Seminars Quiz
August	1-3	Vector valued point functions. Derivative along a curve, directional derivatives.	1. G.B. Thomas & R.L. Finney, Calculus, Pearson Education, 2017.	5. Group Discussions
	3 - 4	Unit-II: Gradient of scalar point function.	2. H. Anton, I. Bivens	
September	1 - 4	Divergence and curl of a vector point function, Divergence and curl of sums and products. Laplacian operator.	 and S. Davis. Calculus, john Wiely and Sons (Asia) P. Ltd., 2002. 3. P.C. Matthew's, 	
October	1 - 4	Unit -III: Orthogonal Curvilinear Coordinates, Condition for orthogonality. Fundamental triads of mutually orthogonal unit vectors.	Vector Calculus, Springer Verlag London Limited, 1998.	
November	1 - 2	Gradient, Divergence, curl and Laplacian operators in terms of orthogonal curvilinear coordinates.		
	3 -4	Unit -IV:Vector Integration		
December	1 - 4	Line, surface and volume integrals. Theorems of Gauss, Green and Stokes		
February	1-3	Problems based on Gauss, Green and Stokes Theorems.	1	
	4	Revision		

Name of the Department: Mathematics

Session: 2024-2025

Course: Numerical Methods (MATH304TH)

Month	Weeks	Books/Unit/Topics	Teaching Methods/ Resources	Students activities
July	1 - 4	Unit-I: Algorithms, Convergence, Bisection method, False position method, Fixed point method.	Teaching Methods: Lecture Methods/PPT Resources:	 Students Presentations Class tests Seminars
August	1-3	Newton's method, Secant method, LU decomposition.	1. B. Bradie, A Friendly	 Quiz Group Discussions
	4	Unit-II: Gauss-Jacobi method	Introduction to Numerical Analysis.	
September	1 - 4	Gauss-Seidel and SOR iterative methods, Problems based on these methods.	Pearson Education, India, 2007.	
			2. M. K. Jain, S. R. K. Iyenger and R. K.	
October	1 - 2	Lagrange and Newton interpolation: linear and higher order.	Jain, Numerical Methods for Scientific and Engineering Computation, 5 th Ed.,	
	3 - 4	Unit -III: Finite difference operators, Numerical differentiation.	New age International Publisher, India, 2007.	
November	1 - 2	Newton's forward difference and backward difference methods.	-	
	3 - 4	Sterling's Central difference method, Problems based on above methods.	-	
December	1 - 4	Unit -IV: NumericalIntegration: Trapezoidal rule, Simpson's rule, questions on numerical integration.		
February	1 - 2	Euler's method.		
	3 - 4	Revision	-	

Name of the Department: Mathematics

Session: 2024-2025

Course: Algebra (MATH202TH)

July1 - 4Unit-I: Definition and examples of groups, examples of abelian and non-abelian groups, the group Zn of integers under addition modulo n.Teaching Methods: Lecture Methods/PPT1. Students Presentation: Class testsAugust1-3The group U(n) of units under multiplication modulo n. Cyclic groups from number systems, complex roots of unity.1. John B. Fraleigh, A First Course in Abstract Algebra, 7th Ed., Pearson, 2002.1. Outi-II: SubgroupsSeptember1 - 4Cycle subgroups, the concept of a subgroup generated by a subset and the commutator subgroup of a group, examples of subgroups.3. Joseph A Gallian, Contemporary Abstract Algebra, 4th Ed., Narosa, 1999.October1 - 2Center of a group, Cosets, Index of subgroups, Lagrange's theorem, order of an element.3. Joseph A Gallian, Contemporary Abstract Algebra, 4th Ed., Narosa, 1999.November1 - 4Unit -III:Normal subgroups: their definition, examples and characterization, order of an element.November1 - 4Unit -IV:Definition and examples of Rings, examples of commutative and non-commutative rings: rings from number systems, Zn the ring of integers modulo n. Rings of matrices.February1 - 3Polynomial rings, subrings and idels, definition of Integral domain and fields.John1 - 3Polynomial rings, subrings and idels, definition of Integral domain and fields.	Month	Weeks	Books/Unit/Topics	Teaching Methods/ Resources	Students activities
August1-3The group U(n) of units under multiplication modulo n. Cyclic groups from number systems, complex roots of unity.1. John B. Fraleigh, A 	July	1 - 4	groups, examples of abelian and non-abelian groups, the group Zn of	Lecture Methods/PPT	Presentations2. Class tests3. Seminars
YChildrin. SubgroupsAlgebra, 2 nd Ed., Pearson, 2011.September1 - 4Cycle subgroups, the concept of a subgroup generated by a subset and the commutator subgroup of a 	August	1-3	multiplication modulo n. Cyclic groups from number systems,	FIrst Course in Abstract Algebra, 7 th	5. Group
September1 - 4Cycle subgroup of a subgroup subset and the commutator subgroup of a group, examples of subgroups.3. Joseph A Gallian, Contemporary Abstract Algebra, 4th Ed., Narosa, 1999.October1 - 2Center of a group, Cosets, Index of subgroups, Lagrange's theorem, order of an element.3. 43 - 4Unit -III:Normal subgroups: their definition, examples and characterization,Heorem of Homomorphism. First theorem of Homomorphism. First theorem of Homomorphism.December1 - 4Quotient groups. Kernel, Basic theorem of Rings, examples of commutative rings from number systems, Zn the ring of integers modulo n. Rings of matrices.February1 - 3Polynomial rings, subrings and ideals, definition of Integral domain and fields.		4		Algebra, 2 nd Ed.,	
subgroups, Lagrange's theorem, order of an element.3 - 4Unit -III:Normal subgroups: their definition, examples and characterization,November1 - 4Quotient groups. Kernel, Basic 	September	1 - 4	subgroup generated by a subset and the commutator subgroup of a	3. Joseph A Gallian, Contemporary Abstract Algebra, 4 th	
definition, examples and characterization,November1 - 4Quotient groups. Kernel, Basic theorem of Homomorphism. First theorem of Homomorphism.December1 - 4Unit -IV:Definition and examples of Rings, examples of commutative and non-commutative rings: rings from number systems, Zn the ring 	October	1 - 2	subgroups, Lagrange's theorem,		
December1 - 4Unit -IV:Definition and examples of Rings, examples of commutative and non-commutative rings: rings from number systems, Zn the ring of integers modulo n. Rings of matrices.February1 - 3Polynomial rings, subrings and ideals, definition of Integral domain and fields.		3 - 4	definition, examples and		
of Rings, examples of commutative and non-commutative rings: rings from number systems, Zn the ring of integers modulo n. Rings of matrices.February1 - 3Polynomial rings, subrings and ideals, definition of Integral domain and fields.	November	1 - 4	theorem of Homomorphism. First		
ideals, definition of Integral domain and fields.	December	1 - 4	of Rings, examples of commutative and non-commutative rings: rings from number systems, Zn the ring of integers modulo n. Rings of		
3-4 Revision	February	1 - 3	ideals, definition of Integral domain		
		3 - 4	Revision		